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BACKGROUND: Coarse particulate matter (PM10–2:5) is primarily mechanically generated and includes crustal material, brake and tire wear, and biolog-
ical particles. PM10–2:5 is associated with pulmonary disease, which can lead to right ventricular (RV) dysfunction. Although RV characteristics have
been associated with combustion-related pollutants, relationships with PM10–2:5 remain unknown.

OBJECTIVES: To quantify cross-sectional associations between RV dysfunction and PM10–2:5 mass and components among older adults and susceptible
populations.

METHODS: We used baseline cardiac magnetic resonance images from 1,490 participants (45–84 y old) from the Multi-Ethnic Study of Atherosclerosis
and assigned 5-y residential concentrations of PM10–2:5 mass, copper, zinc, phosphorus, silicon, and endotoxin, using land-use regression models. We
quantified associations with RV mass, end-diastolic volume, and ejection fraction after control for risk factors and copollutants using linear regres-
sion. We further examined personal susceptibility.

RESULTS:We found positive associations of RV mass and, to a lesser extent, end diastolic volume with PM10–2:5 mass among susceptible populations
including smokers and persons with emphysema. After adjustment for copollutants, an interquartile range increase in PM10–2:5 mass (2:2 lg=m3) was
associated with 0:5 g (95% CI: 0.0, 1.0), 0:9 g (95% CI: 0.1, 1.7), and 1:4 g (95% CI: 0.4, 2.5) larger RV mass among former smokers, current smok-
ers, and persons with emphysema, respectively. No associations were found with healthy individuals or with ejection fraction.

CONCLUSIONS: Alterations to RV structure may represent a mechanism by which long-term PM10–2:5 exposure increases risks for adverse respiratory
and cardiovascular outcomes, especially among certain susceptible populations. https://doi.org/10.1289/EHP658

Introduction
Air pollution is a well-established risk factor for adverse respira-
tory outcomes, including chronic lung diseases (Andersen et al.
2011; Karakatsani et al. 2003; Lindgren et al. 2009; Schikowski
et al. 2005; Sunyer 2001), hospitalizations (Chen et al. 2005) and
death (Dockery et al. 1993; Pope et al. 2002). Most recently, it
has been estimated that for 2013 worldwide ambient particulate
matter (PM) pollution accounts for nearly 170,000 deaths and
nearly 4 million disability-adjusted life years (DALYs) due to
chronic respiratory disease (Forouzanfar et al. 2015; IHME
2016).

A common sequela of chronic lung disease is the develop-
ment of pulmonary hypertension and impairments to the heart,
including right ventricular (RV) dysfunction (Freixa et al. 2013).
The right ventricle pumps blood through the lungs to allow for its
oxygenation. Then the oxygen-rich blood flows to the left ventri-
cle for subsequent distribution to all tissues of the human body.
Changes in RV structure and function can therefore result in
many similar clinical sequelae of left ventricular (LV) changes,
including dyspnea, exercise intolerance, lower-extremity edema,
and (at advanced stages) severe heart failure (Voelkel et al.
2006). Although the left ventricle is vulnerable to increased pres-
sures during ejection due to systemic hypertension or valvular
disease, reduced blood supply, and hypoxia, the right ventricle
may be similarly affected by changes in lung function [e.g.,
chronic obstructive pulmonary disorder (COPD)], LV function,
and hypoxia (e.g., sleep disordered breathing). The RV has been
thought to respond to this increased load through structural
changes such as hypertrophy (i.e., thickening of the ventricle
leading to increased mass), chamber dilation leading to greater
end-diastolic volume, and lowered pumping efficiency (i.e.,
reduced ejection fraction) (Polak et al. 1983; Shah et al. 1986).
Although these three manifestations of RV dysfunction are most
likely in severe stages of lung disease, the right ventricle can also
be affected early in lung disease (Hilde et al. 2013). RV dysfunc-
tion has public health importance because it has been linked to
poor outcomes among persons with and without preexisting dis-
ease, such as COPD and cardiovascular disease (Burgess et al.
2002; France et al. 1988; Kawut et al. 2012).

Long-term exposures to air pollution are believed to affect
the same biological mechanisms that lead to COPD and
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cardiovascular disease. There is evidence that air pollution is
associated with greater inflammation (Adar et al. 2015b) and
reduced vessel compliance (Brook et al. 2014; Krishnan et al.
2013; Mills et al. 2005); such evidence suggests a plausible link
to RV function. In fact, two studies from the Multi-Ethnic Study
of Atherosclerosis (MESA) recently linked long-term exposures
to two combustion-related air pollutants: nitrogen dioxide (NO2)
(Leary et al. 2014) and fine PM (aerodynamic diameter
<2:5 lm, PM2:5) (Aaron et al. 2016) to greater RV hypertrophy
and lower function. Although PM in the coarse fraction (aerody-
namic diameter between 2.5 and 10 lm, PM10–2:5) has also been
associated with adverse respiratory end points (Adar et al. 2014;
Brunekreef and Forsberg 2005), no study has investigated associ-
ations between PM10–2:5 and RV characteristics. Understanding
the health impacts of PM10–2:5 independent of other pollutants,
including PM2:5 and NO2 has importance, given that the U.S.
Environmental Protection Agency (EPA) is interested in regulat-
ing PM10–2:5 levels but has struggled with insufficient data in the
general population as well as among susceptible individuals
(U.S. EPA 2009). Because PM10–2:5 is generated by very differ-
ent diverse processes, ranging from crustal material to brake and
tire wear, a lack of information on associations between health
and indicators of different PM10–2:5 sources represents another
important gap in the literature.

To expand the literature on the health implications of PM10–2:5
and to better understand environmental risk factors of RV dys-
function, we aimed to quantify cross-sectional associations
between PM10–2:5 and measures of RV function among older
adults and susceptible subpopulations. We approached this
goal using individual-level long-term estimates of PM10–2:5
mass and selected source-specific components with multiple
measures of RV structure (mass, end-diastolic volume) and
function (ejection fraction) in participants of MESA. Some of
these results have been previously reported in the form of an
abstract (Adar et al. 2015a).

Methods

Study Population
Initiated in 2000, MESA is a multicenter, prospective study
examining the progression of subclinical cardiovascular disease
among an ethnically diverse population of 6,814 subjects
(45–84 y old) who were free of known cardiovascular disease at
baseline (Bild et al. 2002). In this analysis, we restricted report-
ing to participants from Chicago, Illinois, St. Paul, Minnesota,
and Winston-Salem, North Carolina, who were part of the
MESA Coarse ancillary study (n=3,295). The MESA Coarse
study conducted intensive sampling of PM10–2:5 concentrations in
three of the MESA sites chosen to reflect PM10–2:5 variability.
We further restricted to those who had cardiac magnetic reso-
nance images (MRI) interpreted for RV morphology as part of
the MESA RV ancillary study (n=1,851). After excluding those
with missing exposures and covariates, our final sample was
1,490 persons (Figure S1).

All protocols described herein received approval from local
and national institutional review boards. Participants also pro-
vided informed consent.

Right Ventricle Characteristics
The MESA RV study obtained measures of RV function using
cardiac MRIs performed at the baseline exam (Natori et al.
2006). These measures include RV mass at end-diastole, end-
diastolic volume, and ejection fraction (Bluemke et al. 2008;
Chahal et al. 2010). These measures were estimated by two

independent analysts using QMASS software (version 4.2;
Medis), is described elsewhere (Chahal et al. 2010). Based on
random, blinded rereads from approximately 230 scans, the inter-
reader intraclass correlation coefficients were 0.89, 0.96, and 0.80
for RV mass, end-diastolic volume, and ejection fraction, respec-
tively (Kawut et al. 2011).

Exposure Assessment
We used site-specific land-use regression spatial prediction mod-
els derived from project-specific PM10–2:5 measurements and geo-
graphic data to predict concentrations of PM10–2:5 at subjects’
residences. Details of these models have been previously pub-
lished (Zhang et al. 2014). Briefly, we conducted two spatially in-
tensive 2-wk monitoring campaigns of integrative PM10 and
PM2:5 samples using paired Harvard Personal Exposure Monitors
(HPEMs) in each of three MESA Coarse sites. In each city,
approximately 60 locations were targeted to cover the greatest ge-
ographic space. Additionally, the locations were selected to cap-
ture the variability of hypothesized characteristics associated
with PM10–2:5 mass and components (e.g., vegetation, distance to
roads). All samples were weighed in a temperature- and relative
humidity-controlled chamber, analyzed for elements by X-ray
fluorescence spectroscopy, and total PM10–2:5 mass and that of
chemical components were calculated by difference (U.S. EPA
2009). The specific components of interest were copper, zinc,
phosphorus, and silicon as consistent indicators for motor vehicle
brake wear, tire wear, fertilized soil/agriculture, and crustal mate-
rial across all study sites, respectively (Sturtz et al. 2014). We
also examined a fifth component of PM10–2:5, endotoxin, a major
component of the outer membrane of Gram-negative bacteria.
Endotoxin was chosen due to its capability to induce inflamma-
tion and modulate immune responses (Hadina et al. 2008) and its
association with airway disease (Schwartz et al. 1995). We sepa-
rately derived spatial prediction models for PM10–2:5 mass and
each component using many geographic variables, including land
use, population density, vegetation, impervious surface, road-
ways, railways, and airports, as well as spatial correlation. The
cross-validated (CV) R2 for the site-specific models of PM10–2:5
and chemical species ranged from 0.3 to 0.9. As described else-
where (Zhang et al 2014), the models performed best for copper
(CV R2, 0.5–0.9) and generally worse for endotoxin (CV
R2 = 0:3–0:4). For our statistical modeling, we selected 5–y aver-
age concentrations weighted according to subjects’ residential
history preceding subjects’MRI.

Exposures to PM2:5 and NO2 were also estimated for each
participant using spatiotemporal models derived from project-
specific measurements, land-use characteristics, as well as regula-
tory monitoring data in the MESA Air study (Gill et al. 2011;
Szpiro et al. 2010).

Covariates
All covariates, with the exception of airflow limitation, were
assessed at baseline. These included sociodemographic and
behavior information obtained via interview, and anthropometric
measurements, left ventricle function, and laboratory data from
the clinical exam. Comorbidities of hypertension and diabetes
were also defined based on blood pressure or glucose measure-
ments, respectively, self-reported medication use, and doctor di-
agnosis (Genuth et al. 2003; JNC 1997). Through the MESA
Lung ancillary study, we had data on percent emphysema from
computed tomography (CT) scans (Hoffman et al. 2009) and spi-
rometry (Hankinson et al. 2010). The MESA Neighborhood
Study developed a neighborhood socioeconomic scale (NSES)
for each participant based on a principal components analysis of
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2000 census tract data (U.S. Census Bureau 2002), including me-
dian household income, percent of persons in tract with at least a
high school degree and median home value (Hajat et al. 2013).

Statistical Analysis
Multivariable linear regression models were used to quantify
adjusted cross-sectional associations between PM10–2:5 and con-
tinuous measures of our RV outcomes. All models were adjusted
for age, race/ethnicity (White, Chinese, Black, and Hispanic),
sex, education (less than high school, high school/some college,
college or more), NSES, height, weight, cigarette smoking his-
tory (never, former, current), pack-years of smoking (0 pack-y,
0< pack-y≤10, 10< pack-y≤20, greater than 20), second-hand
smoke exposure, hypertension (JNC 1997), diabetes (according to
the 2003 American Diabetes Association Fasting Criteria
Algorithm: normal, impaired fasting glucose, untreated diabetes,
treated diabetes), cholesterol, study site, and an interaction of
study site with NSES. Age, height, weight, NSES, and choles-
terol were modeled as continuous; all other variables were mod-
eled as categorical. In secondary models, we examined the
linearity of these associations using splines and the robustness
of our results to adjustment for PM2:5 and NO2 in two pollutant
models. In secondary models of the chemical species of
PM10–2:5 we also adjusted for total mass as a covariate using a
constituent residual model (Mostofsky et al. 2012). We used
interaction terms to assess effect modification by age, sex,
race/ethnicity, smoking status, emphysema (defined as percent
of emphysema-like lung based on CT scans that were greater than
the upper limit of normal (Hoffman et al. 2014)), and airflow limi-
tation (FEV1=FVC<0:7). All reported estimates were scaled to
the interquartile range (IQR) for each pollutant/species: PM10–2:5
(2:2 lg=m3), copper (4 ng=m3), zinc (11 ng=m3), phosphorous
(6 ng=m3), silicon (0:13lg=m3), endotoxin (0:08EU=m3), NO2
(7.0 ppb), and PM2:5 (3:8 lg=m3).

In sensitivity analyses, we restricted our analyses to partici-
pants who were residentially stable (lived at their current resi-
dence for 10 y or longer) and examined additional control for
hypertension, diabetes, and cholesterol, as well as measures of
LV function and lung disease as potential mediators.

The data analysis for this paper was generated using SAS (ver-
sion 9.4; SAS Institute Inc.) and R (version 3.3.2; R Development
Core Team).

Results
The mean age of the sample at baseline was 61 y; nearly 9%
had physician-diagnosed asthma, and 7% had emphysema based
on their CT scans (Table 1). Although participants in this sam-
ple were more likely to be Chinese, less likely to be black, and
more likely to have a graduate degree than the full MESA
Coarse cohort, these individuals were otherwise quite similar.
Importantly, they did not differ with respect to their air pollu-
tion levels for all pollutants except zinc, which was approxi-
mately 10% lower in the study sample (Table S1).

Average PM10–2:5 mass concentrations were lowest for
Winston-Salem (3:7 lg=m3) but similar in St. Paul (5:3 lg=m3)
and Chicago (5:5lg=m3). St. Paul had the largest intracity varia-
tion (standard deviation: 1:8 lg=m3 in St. Paul vs. 1:2 lg=m3 for
Chicago and Winston-Salem). With respect to the chemical com-
ponents, the highest average concentrations of the two traffic-
related markers of copper and zinc were in Chicago, whereas
Winston-Salem had the highest concentrations of phosphorus.
Mean endotoxin levels were generally low (≤0:1 EU=m3) across
all locations. In all locations, we observed modest to high correla-
tions (0.46–0.89) between the traffic-related pollutants of

copper, zinc, and NO2. In addition, PM2:5 and NO2 were also
correlated (>0:6) in all locations. Although the other pollutants
did not demonstrate consistent patterns across sites, there were
notable (>0:6) correlations between most pollutants in Chicago
(Table S2).

Among all participants, RV mass was positively associated
with PM10–2:5 mass, copper, phosphorus, and silicon in single-
pollutant models (Table 2). After controlling for PM2:5 and NO2,
however, which were themselves associated with RV mass, the
association with copper was eliminated and associations with
PM10–2:5 mass, phosphorus, and silicon were blunted. Apart from
copper, adjustment for PM10–2:5 mass did not strongly affect asso-
ciations with any chemical components (Figure S2). Results were
also robust to more and less control for potential intermediate
factors such as hypertension, cholesterol, diabetes, emphysema,
airflow limitation, and LV mass and function (Figure S3).

Analysis of effect modification suggested that associations
between PM10–2:5 and RV mass were present in several susceptible
populations. These subgroups included: former and current smokers
in comparison with nonsmokers (p-value for interaction= 0:02),
persons with emphysema in comparison with persons without em-
physema (p-value for interaction= 0:02), and residentially stable
participants in comparison with participants who had lived at their
residences for less than 10 y (p-value for interaction= 0:15). These
associations remained even after adjustment for PM2:5 and NO2
concentrations (Figure 1) and after adjustment for emphysema
(results not shown).

Although the size and direction of the associations between
PM10–2:5 mass and silicon with RV end-diastolic volume were
consistent with RV mass, the confidence intervals were very
wide and indistinguishable from no association (Table 2). As
with RV mass, associations with RV end-diastolic volume were
strongest among current smokers, participants with emphysema,
and particpants who were residentially stable, although the preci-
sion of these estimates remained large (Figure S4). No associa-
tions were observed with ejection fraction in the full cohort or in
any subpopulation evaluated.

Discussion
Among a population-based cohort from three U.S. metropolitan
areas, we found suggestive evidence of associations between
PM10–2:5 and RV structure after adjustment for confounding by
PM2:5 and NO2. Positive associations between total PM10–2:5
mass concentrations and RV hypertrophy and, to a lesser extent,
dilation were driven by relationships among former and current
smokers, persons with advanced emphysema, and participants
who were residentially stable. Associations were not found
among other participants. No associations were found with RV
ejection fraction among any group.

This study adds to the literature by expanding our understand-
ing of the health implications of PM10–2:5 and the environmental
risk factors for RV dysfunction. After adjustment for other risk
factors such as smoking, height, weight, and co-pollutants previ-
ously associated with RV dysfunction, we observed the most
robust associations for PM10–2:5 mass with a 1:4 g (95% CI:
0.4, 2.5) and 0:9 g (95% CI: 0.1, 1.7) larger RV mass among per-
sons with emphysema and current smokers, respectively, per
2:2 lg=m3. These associations were on the same order of magni-
tude as those reported for PM2:5 in the full cohort (Aaron et al.
2016) and in the MESA Coarse cities. These differences are also
comparable to differences in RV mass for participants 5 kg=m2

apart in BMI (Chahal et al. 2012) and may be clinically relevant,
given that MESA participants with RV hypertrophy have double
to triple the risk of heart failure or cardiovascular death (Kawut
et al. 2012).
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Mechanisms through which PM10–2:5 exposures might likely
affect the right ventricle (Voelkel et al. 2006) include the restruc-
turing of the pulmonary vasculature, increases in RV load
(Zangiabadi et al. 2014), hypoxia, inflammation (Chaouat et al.
2009), and autonomic dysfunction (Wensel et al. 2009; Wrobel
et al. 2012). Support for these mechanisms comes from a previ-
ous study of healthy Mexican children that reported greater
pulmonary arterial pressures and serum levels of the vasocon-
strictive protein endothelin-1 with larger long-term PM con-
centrations (Calderón-Garcidueñas et al. 2007). Toxicological
research has similarly demonstrated enhanced vasoconstriction
and impaired vasodilation of pulmonary arterioles in healthy
animals and in animals with chronic bronchitis exposed to PM
(Faustini et al. 2012; Peel et al. 2005). Interestingly, the associa-
tions with RV mass were robust to control for hypertension,
emphysema, airflow limitation, and LV mass and function, sug-
gesting that these factors may not be critical intermediates of our
observed associations. However, it is difficult to conclusively

assess mediation in this study given our cross-sectional design and
the possibility that only advanced cases of emphysema or airflow
limitation are critical intermediates, which are limited in number
in this population. Our overall null associations with RV ejection
fraction were similar to findings in a previous analysis (Kawut
et al. 2012) where only RV mass was independently associated
with cardiovascular death. These data could suggest that RV hy-
pertrophy is an earlier indicator of increased pressure in the RV
than RV ejection fraction, though this has yet to be clearly
demonstrated.

Although the observed association between PM10–2:5 and RV
appeared to be independent of PM10–2:5-associated lung damage,
the interaction with emphysema suggests that individuals with
preexisting lung damage may be more susceptible to long-term
PM10–2:5 exposures. This susceptibility is plausible, given that
persons with COPD have greater deposition and less mucociliary
clearance of particles from their lungs relative to healthy individ-
uals (Bennett et al. 1997; Brown et al. 2002). It is also consistent

Table 1. Descriptive characteristics of the MESA Coarse participants at the baseline examination (2000–2002), by study site.

Characteristics Total Winston-Salem St. Paul Chicago

n 1490 457 536 497
61:1± 10:0 62:4± 9:6 59:4± 10:0 61:9± 10:1

Age (y, %)
45–54 477 (32%) 124 (27%) 196 (37%) 157 (32%)
55–64 437 (29%) 128 (28%) 173 (32%) 136 (27%)
65–74 404 (27%) 150 (33%) 119 (22%) 135 (27%)
75–84 172 (12%) 55 (12%) 48 (9%) 69 (14%)
Female 795 (53%) 253 (55%) 278 (52%) 264 (53%)
Race/ethnicity
White 828 (56%) 277 (61%) 327 (61%) 224 (45%)
Chinese 158 (11%) 0 (0%) 0 (0%) 158 (32%)
Black 293 (20%) 178 (39%) 0 (0%) 115 (23%)
Hispanic 211 (14%) 2 (0%) 209 (39%) 0 (0%)
Education
<High school 400 (27%) 128 (28%) 205 (38%) 67 (13%)
High school/some college 440 (30%) 135 (30%) 191 (36%) 114 (23%)
≥College 650 (44%) 194 (42%) 140 (26%) 316 (64%)

Smoking status
Never 744 (50%) 225 (49%) 255 (48%) 264 (53%)
Former 556 (37%) 171 (37%) 200 (37%) 185 (37%)
Current 190 (13%) 61 (13%) 81 (15%) 48 (10%)
≥10 y in neighborhood 1033 (69%) 281 (61%) 381 (71%) 371 (75%)
Health
BMI (kg=m2) 27:7± 5:0 28:2± 5:0 28:9± 4:9 26:0± 4:7
Cholesterol (mg/dl) 195:3± 36:0 189:1± 34:7 201:5± 38:9 194:2± 32:7
Hypertension 584 (39%) 232 (51%) 167 (31%) 185 (37%)
Diabetic 2.3 (1.0) 1.4 (1.0) 2.0 (1.0) 3.8 (1.0)
% Emphysema (−950HU)a 81% (0) 37% (0) 71% (0) 134% (0)
Airflow limitationb 220 (22%) 66 (26%) 57 (19%) 97 (22%)
Emphysema 97 (7%) 15 (3%) 46 (9%) 36 (7%)
Asthma 130 (9%) 36 (8%) 51 (10%) 43 (9%)
Left Ventricular end-diastolic Mass (g) 147:5± 39:0 145:7± 38:5 154:6± 38:5 141:4± 38:8
RV Outcomes
RV mass (g) 21:6± 4:7 21:2± 4:3 22:7± 4:9 20:8± 4:5
RV ejection fraction (%) 70:3± 6:7 69:1± 7:0 70:2± 6:3 71:4± 6:5
RV end-diastolic volume (mL) 127:6± 33:2 122:9± 30:5 135:1± 35:0 123:9± 32:2
Pollutants
PM10–2:5 (lg=m3) 4:9± 1:6 3:7± 1:2 5:3± 1:8 5:5± 1:2
Copper (ng=m3) 4:4± 2:5 2:5± 0:8 3:5± 0:8 7:1± 2:4
Zinc (ng=m3) 9:0± 9:6 3:1± 1:6 5:1± 1:2 18:5± 11:5
Silicon (lg=m3) 0:4± 0:1 0:4± 0:0 0:5± 0:1 0:4± 0:1
Phosphorous (ng=m3) 15:9± 3:6 19:7± 2:2 12:9± 1:9 15:6± 2:7
Endotoxin (EU=m3) 0:1± 0:1 0:0± 0:0 0:1± 0:0 0:0± 0:1
PM2:5 (lg=m3) 14:6± 2:1 15:5± 0:9 12:3± 1:4 16:1± 1:4
NO2 (ppb) 14:7± 5:1 10:3± 2:5 13:5± 2:2 20:2± 4:1

Note: Values given as n (%) or mean± standard deviation. BMI, body mass index; NO2, nitrogen dioxide; PM2:5, particulate matter <2:5 lm in diameter; PM10–2:5, particulate matter
between 2.5 and 10 lm in diameter; RV, right ventricular.
aEmphysema is defined as the percent emphysema via computed tomography scan greater than the upper limit of normal.
aAirflow limitation is defined as an FEV1=FVC<0:7 and was available on only 974 participants.
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with epidemiological evidence of enhanced vulnerability of per-
sons with respiratory conditions to short-term air pollution expo-
sures (Faustini et al. 2012; Peel et al. 2005; Sacks et al. 2011),
though the findings of the few studies to examine chronic lung
disease as an effect modifier of long-term exposures to air pollu-
tion have been mixed (Andersen et al. 2012; Jerrett et al. 2009).

We also observed positive associations between RV mass and
PM10–2:5 concentrations among participants who smoke or who
have a history of smoking, independent of their emphysema sta-
tus. One possible explanation may be that individuals who smoke
or have smoked are more susceptible to the effects of air pollution
because of smoking’s ability to increase inflammation and vaso-
constriction (Akishima et al. 2007) and alter immune function,
among other effects. However, epidemiologic evidence has also
been mixed regarding the interaction between smoking and air
pollution (Pope et al. 2011), suggesting that more research is nec-
essary to understand this relationship. In addition, some caution
is warranted about the generalizability of these findings as the
smokers in MESA are generally healthier than the average smok-
ing population due to our restriction to older adults without cardi-
ovascular disease at baseline.

Our study is not without limitations. First, due to its cross-
sectional design, our findings only provide evidence of potential
associations that warrant further evaluation. Reverse causality is
unlikely, however, and we have adjusted our models for a rich set
of personal characteristics to account for between-person differ-
ences. Second, despite the highly innovative exposure assessment
used, our exposure models are entirely spatial in nature and are
assumed to capture the key differences in concentrations across

space at different times. Our finding that associations were larger
and more precise among persons living at their residences for
>10 y may, however, suggest that our overall results may be bi-
ased towards the null due to inaccuracies in long-term exposures
for some participants. On the other hand, compared with individ-
uals who lived in their neighborhood for <10 y, residentially sta-
ble participants were more likely to be older, have hypertension,
and have advanced emphysema, suggesting that these individuals
may have been susceptible for other reasons. Another issue is
that our models varied in predictive power by pollutant. Thus,
differences in the observed strength of association between pollu-
tants may be causal or could simply reflect different measurement
errors. For example we found significant associations with PM2:5
and NO2, which, compared with PM10–2:5, had substantially bet-
ter predictive ability due to a greater number of measurements
that were collected over a longer period of time. In contrast, no
associations were found with endotoxin, which had the lowest
CVR2 in our prediction models. This finding may be the result of
smaller errors for PM2:5 and NO2 that make them less likely to
be biased toward the null in individual pollutant and multipollu-
tant models. Finally, although the exposure estimation methods
used in this study allow for individual assessment of outdoor con-
centrations, we do not have estimates of indoor or personal
concentrations.

Despite these limitations, this work has many important
strengths. The MESA cohort is an extremely well-characterized
population with detailed and standardized measures of outcomes
and covariates. The availability of RV measures is unique in such
a large sample. Another distinction in this study is our exposure

Table 2. Associations between PM10–2:5 mass and RV structure and function in single and multipollutant models.

Model

Mass (g) Volume (mL) Ejection Fraction (%)

Difference 95% CI p–Value Difference 95% CI p–Value Difference 95% CI p–Value

PM10–2:5
Single Pollutant Model 0.3 0.0, 0.5 0.06 0.4 −1:3, 2.2 0.63 −0:1 −0:6, 0.4 0.75
+ PM2:5 0.2 −0:1, 0.5 0.14 0.3 −1:5, 2.2 0.74 −0:1 −0:6, 0.4 0.76
+ NO2 0.2 −0:1, 0.5 0.22 0.4 −1:5, 2.3 0.68 −0:1 −0:6, 0.4 0.72

Cu
Single Pollutant Model 0.3 −0:2, 0.8 0.20 0.6 −2:5, 3.6 0.71 0.1 −0:7, 1.0 0.75
+ PM2:5 0.0 −0:5, 0.5 0.93 0.0 −3:4, 3.3 0.99 0.5 −0:5, 1.4 0.32
+ NO2 −0:2 −0:8, 0.5 0.56 −0:1 −4:3, 4.1 0.96 0.4 −0:8, 1.6 0.56

Zn
Single Pollutant Model 0.0 −0:3, 0.3 0.90 −0:6 −2:6, 1.3 0.51 −0:1 −0:6, 0.5 0.81
+ PM2:5 −0:2 −0:5, 0.1 0.16 −1:1 −3:2, 0.9 0.27 0.1 −0:5, 0.6 0.85
+ NO2 −0:3 −0:7, 0.0 0.09 −1:4 −3:6, 0.9 0.24 −0:1 −0:7, 0.6 0.81

P
Single Pollutant Model 0.5 0.0, 1.0 0.03 0.5 −2:6, 3.6 0.75 −0:1 −0:9, 0.8 0.87
+ PM2:5 0.2 −0:3, 0.7 0.41 −0:4 −3:6, 2.9 0.83 0.0 −0:9, 1.0 0.93
+ NO2 0.3 −0:2, 0.8 0.25 0.0 −3:4, 3.4 0.99 −0:1 −1:0, 0.9 0.91

Si
Single Pollutant Model 0.4 0.1, 0.7 0.01 0.8 −1:1, 2.8 0.41 −0:2 −0:7, 0.4 0.54
+ PM2:5 0.2 −0:2, 0.5 0.36 0.2 −2:0, 2.4 0.86 0.0 −0:6, 0.6 0.95
+ NO2 0.3 −0:1, 0.6 0.19 0.7 −1:8, 3.1 0.59 −0:2 −0:9, 0.4 0.49

Endotoxin
Single Pollutant Model −0:1 −0:5, 0.2 0.49 −0:2 −2:4, 1.9 0.82 −0:1 −0:7, 0.5 0.67
+ PM2:5 0.1 −0:3, 0.4 0.64 0.1 −2:1, 2.4 0.91 −0:4 −1:0, 0.3 0.26
+ NO2 0.0 −0:4, 0.3 0.89 −0:1 −2:4, 2.1 0.90 −0:2 −0:8, 0.5 0.59

NO2
Single Pollutant Model 0.5 0.1, 0.9 0.01 0.8 −1:8, 3.5 0.54 0.0 −0:8, 0.7 0.93
+ PM10–2:5 0.4 0.0, 0.9 0.06 0.6 −2:2, 3.5 0.66 0.0 −0:8, 0.8 0.96
+ PM2:5 0.2 −0:3, 0.8 0.38 0.3 −3:1, 3.8 0.84 0.3 −0:7, 1.3 0.53

PM2:5
Single Pollutant Model 1.0 0.4, 1.6 0.001 1.8 −2:0, 5.6 0.36 −0:6 −1:7, 0.4 0.25
+ PM10–2:5 0.9 0.3, 1.5 0.003 1.7 −2:3, 5.6 0.41 −0:6 −1:7, 0.5 0.28
+ NO2 0.8 0.0, 1.5 0.043 1.5 −3:4, 6.4 0.56 −0:9 −2:3, 0.5 0.19

Note: All models adjusted for age, race, gender, height, weight, neighborhood socioeconomic scale (NSES), NSES, education, smoking status, pack-years, second-hand smoke expo-
sure, hypertension, diabetes, total cholesterol, study site, and site by NSES interaction. Associations scaled to interquartile range (IQR) IQR of pollutant: PM10–2:5 (2:2 lg=m3), Cu
(4 ng=m3), Zn (11 ng=m3), P (6 ng=m3), Si (0:13 lg=m3), endotoxin (0:08EU=m3), PM2:5 (3:8lg=m3), NO2 (7:0 ppb). CI, confidence interval; Cu, copper; NO2, nitrogen dioxide; P,
phosphorous; PM2:5, particulate matter <2:5 lm in diameter; PM10–2:5, particulate matter between 2.5 and 10 lm in diameter; Si, silicon; Zn, zinc.
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assessment, which improves on existing epidemiology studies of
long-term exposures to PM10–2:5 in the United States. Our model
predicts fine-scale spatial variability in exposures using a model
derived from intensive air pollution monitoring campaigns in
each study community. This methodology is in contrast to previ-
ous studies that have relied exclusively on data from relatively
sparse national monitoring networks to estimate exposures to
PM10–2:5 (Lipfert et al. 2006; McDonnell et al. 2000; Pope et al.
2002; Puett et al. 2009; Puett et al. 2011). We were also able to
control for copollutants (PM2:5 and NO2) and demonstrated inde-
pendent associations with PM10–2:5. The availability of chemical
component data has particularly important implications for regu-
latory purposes, given that PM10–2:5 is generated by both natural
and anthropogenic sources. This inclusion has important implica-
tions for regulatory purposes, given that PM10–2:5 is generated by
both natural and anthropogenic sources.

Conclusion
This cross-sectional study provided some evidence of a positive
association between long-term residential PM10–2:5 concentrations
and RV mass among persons with a history of tobacco-smoke expo-
sures and persons with severe emphysema. If replicated by future
work, our findings could suggest a possible mechanism for observed
associations between PM10–2:5 exposures and mortality from respi-
ratory disease.
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